Contribution from the Istituto di Chimica Generale ed Inorganica dell'Università and Laboratorio del CNR, via I. Nardi 39, Firenze, Italy

Size of the Chelate Rings and Stability of Some Transition Metal" Ion Complexes with Linear Aliphatic Triamines: 1,4,8-triazaoctane(2,3_tri)

R. Barbucci, L. Fabbrizzi, and P. Paoletti

Received July **31, 1972**

The basicity constants of l,\$,&triazaoctane (2,3-tri) were determined in 0.5 M KNO₃ at 25.0° C potentio*metrically, using a glass electrode. The equilibria be*tween $(2,3$ -tri) and Ni^{2+} , Cu^{2+} , Zn^{2+} ions were inve*stigated under similar conditions. The stability constants show that the complexes ML2' with this unsymmetrical ligand are more stable than the complexes with the symmetrical ligands: 1,4,7 triazaeptane (2,2 tri) and 1,5,9 triazanonane (3,3-tri). This behaviour seems to be due to the alleviation of the strain present in the complexes of the last two lipands. In addition to the simple complexes ML'+ and ML?+, Cu2+ and Zn2+ give at high pH hydroxo complexes MLOH+. Cu'+ and Ni2' also form protonated complexes Cu-* HL_2^{3+} , CuH L^{3+} and NiH L^{3+} .

Introduction

It has been clearly demonstrated that the stability of the complexes formed from metal ions and linear aliphatic tetramines is greater when the three chelate rings arc 5-membered than when they are 6-membered. One might therefore have expected that complexes with a ligand such as (2,3,2-tet),* which contain a sequence of 5,6,5 membered rings, would have a stability intermediate between those of $(2,2,2-1)$ tet) (this ligand is also known as trien) and (3,3,3 tet). The fact is, however, that (2,3,2-tet) fcrms stronger complexes with Ni^{2+} and Cu^{2+} than does $(2,2,2$ -tet).¹ This result has been ascribed to the effects due to the introduction of the extra methy!ene group upon the strain within the coordinated ligand. It was thought, therefore, that a similar difference in stability in favour of complexes containing alternating 5- and 6-membered rings might also be encountered in the complexes of the tridentate ligand (2,3-tri). A partial investigation of this unsymmetrical ligand' appeared to show that the complex $[Ni(2,3-tri)]^{2+}$ had the same formation constant as the complex $[Ni(2,2-tri)]^{2+}$. This seemed strange since X-ray

structure determinations have shown that both the $Ni²⁺$ ³ and Cu²⁺⁴ complexes with (2,2-tri) are rather strained and some relief of this strain might be expected when one of the polymethylene chains is lengthened.

Thus, we have remeasured the formation constants of the complexes of $(2, 3-tri)$ with Ni²⁺, and have also measured the formation constants of the Cu^{2+} and Zn^{2+} complexes.

Experimental Section

(2,3-tri) (Aldrich Co.) was purified as the hydrochloride, which was recrystallized from ethanol and dried to constant weight at 60° C, in vacuo (Found: Cl 46.8%, $C_5H_{16}N_3Cl$ requires 46.9%). Solutions of potassium hydroxide, nitric acid and metal nitrate were obtained and standardised as previously described.^{5,6} The potentiometric titrations were performed using a Radiometer PHM5 digital potentiometer, a Radiometer G 2025/B glass electrode, a 0.1 *M* calomel electrode and a salt bridge containing 0.5 M $KNO₃$ solution, following the procedure previously described.6 All the potentiometric experiments were carried out at 25.0° C in 0.5 M KNO₃.

The protonation constants were derived from 172 data points obtained in three titrations. For the metal complexes 210 (Cu²⁺), 200 (Ni²⁺) and 151 (Zn²⁺) data points were used. The concentration conditions nre given in Table I. The ligand/metal ratios varied between 1: 1 and 1: 0.2. The program LEAST which -was used to-calculate the constants has been described elsewhere,⁷ and may be obtained as there described. Species introduced into the calculations, but later rejected for lack of computational evidence to support them were: $Cu₃L₂$, $Cu₂L₂(OH)₂$, Ni₂L₃, Ni-HL₂ and NiL(OH). Rejection of other species always gave a significantly poorer fit of the experimental data, and higher standard deviations for the formation constants. The three protonation constants and

(3) P. Paoletti, S. Biagini, and M. Cannas, *Chem. Comm.*, 513
(1969).
(4) F.S. Stephens, *J. Chem. Soc.*, A. 2233 (1969). G. Davey and
F.S. Stephens, *J. Chem. Soc.*, A. 103 (1971).
.~ (5) R. Barbucci, P. Paoletti ,and A. (6) E. Arena% P. Paolettl, A. Dci, and A. Vacca, I. Chem. Sot., *Dallon,* 736 (1972). (7) A. Sabatinl A. Vacca, I. Chcm. Sot. *Dalton,* 1693 (1972).

^(*) Linear aliphatic tctramines of the type $H_2N(CH_2)_nNH(CH_2)_m$ - $NH(CH_2,NH_1$ are denoted by the symbol (n, m, p-tet). Triamines of the type $H_2N(CH_2)_nNH(CH_2)_mNH_2$ are denoted by the symbol (n,

m-tri).

(1) L. Fabbrizzi, R. Barbucci, and P. Paoletti, *J. Chem. Soc. Dal-*
 ton, 1529 (1972).

(2) D.C. Weatherbun, E.J. Billo, J.P. Jones, and D.W. Margerum,
 Inorg. Chem., 9, 1557 (1970).

Table 1. Experimental details of the potentiometric measurements. Initial concentrations (mol $1^{-1} \times 10^{2}$)

Cation	$L: M$ ration	[L]	$[M^{2+}]$	$[\mathrm{H}^{\mathrm{*}}]$	pH range
Zn^{2+}		1.2736		3.9570	3.0-10.9
H^+		1.2996 1.0451		4.0350 3.1350	3.0-10.8 $4.6 - 10.9$
	1:1	0.8983	0.8170	2.8402	2.9-10.8
$Cu2+$	1:0.5 1:0.5 1:0.25 1:0.5 1:0.5 1:0.2 1:0.2	0.9030 1.0533 1.1038 0.9076 0.8400 1.0282 1.0048	0.3912 0.4286 0.2863 0.4737 0.4906 0.2061 0.1846	2,8627 3.3100 3.3620 2.9283 2.6767 3.2877 3.1806	3.0-10.8 $3.0 - 10.8$ 3.6-10.8 2.9-10.8 $3.C-10.8$ 2.9-10.9 3.0-10.8
$Ni2+$	1:0.5 1:1 1:0.2 1:0.5	0.9261 0.9171 1.0416 1.0530	0.3847 0.7414 0.1651 0.5031	2.9176 2.9022 3.2886 3.3069	3.0-10.8 $3.1 - 10.8$ 2.9-10.8 $3.1 - 10.9$

Table II. Tipycal Computer Output containing three points of the 1:1 Curve for the system $Ni''/(2,3)$ -tri in Table I.

70	2.70	$-88.$	0.134×10^{-9}	0.0000045	-0.0000098	0.0000041	8.5	48.8	0.0
77	2.90	-90.9	0.189×10^{-10}	0.0000015	-0.0000038	0.0000019	8.4	53.9	0.0
74	10، ر	-93.9	0.432×10^{-10}	0.0000036	0.0000046	-0.0000029	8.2	59.2	0.0

Column Number: 1) Order Number; 2) Volume (ml) of KOH standard solution added; 3) Value of the potential (mV) of the glass electrode; 4) Value of partial U;⁶ 5) Value of ΔT_{H} ; 6) Value of the ΔT_{M} ; ⁶ 7) Value of ΔT_{L} ; ⁶ 2) Percentage of the [NiHL]³⁺ species; 9) Percentage of [NiL]²⁺ species; 10) Percentage of [NiL

Table III. Basicity constants of linear altiphatic triamines and stability constants of their metal complexes at 25°C.

Ion	Reaction	2.3 tri a	2.2 -tri b	3.3 -tri c
H^+	$H^+ + L \leq H L^+$	10.437(2)	9.79	10.65
	$H^+ + HL^+ \leftarrow H_2L^{2+}$	9.356(6)	8.98	9.57
	$H^+ + H_2L^{2+} \leq H_3L^{3+}$	6.374(8)	4.25	7.72
$Ni2+$	$Ni2+ + HL+ \leftarrow NiHL3+$	5.86(3)		
	$Ni2+ + L \leftarrow NiL2+$	11.234(4)	10.60	9.19
	$NiL^{2+}+L \leq NiL_2^{2+}$	7.06(1)	7.99	3.55
$Cu2+$	$Cu^{2+} + HL^+ \leftarrow CuHL^{3+}$	9.02(2)		
	$Cu^{2+}+L \leftarrow CuL^{2+}$	16.601(3)	15.80	14.20
	$CuL^{2+}+L=CuL^{2+}$	3.28(2)	5.21	
	$CuL^{2+} + HL^+ \rightarrow CuHL_2^{3+}$	2.51(2)		
	$CuL^{2+} + OH^- = CuLOH^+$	4.72(1)	4.50	4.1
Zn^{2+}	$\mathbf{Zn}^{2+} + \mathbf{L} \leq \mathbf{ZnL}^{2+}$	8.770(8)	8.80	7.92
	$ZnL^{2+}+L \leq ZnL^{2+}$	3.80(3)	7.44	
	$ZnL^{2+} + OH^- \rightarrow ZnLOH^+$	4.99 (1)		5.2

a in 0.5 M KNO₃, the values in parentheses are the standard deviations. b Ref. 8 in 0.1 M KCl. c Ref. 9 in 0.1 M KCl.

the experimenally measured ionic product of water were held constant during the calculation of the complex formation constants. A tipycal computer output of the 1:1 curve in the system $Ni^{2+}/(2, 3-tri)$ is given in Table II. The data relating to all the 733 data points can be obtained on request to the authors.

Results and Discussion

Protonation. The basicity constants of (2.3-tri) are shown in Table III. The agreement with the values obtained by Margerum at 25° C in 0.5 M KCl² is not very satisfactory: our values are up to 0.4 log units higher. This difference cannot be simply due to the different inert salt used to maintain the ionic strength. Our values for (2,3-tri) are intermediate between

Inorganica Chimica Acta | 7:1 | March 1973

those of $(2,2-tri)^3$ and $(3,3-tri)^9$ with the biggest difference in the constant relating to the attachment of the third proton. In the latter process the most important factor is the electrostatic repulsion between the positively charged groups, in that the third proton must approach a molecule rendered somewhat less flexible by the repulsion between the two positively charged nitrogen atoms. Schwarzenbach's effective dielectric constant, ε_{eff} must therefore be small.¹⁰ The flexibility of the molecule, and therefore ε_{eff} , increases considerably as the distance between the charges increases, that is as the aliphatic chain lengthens from $(2,2-tri)$ to $(2,3-tri)$ to $(3,3-tri)$.

(8) M. Ciampolini and P. Paolctti, J. Phys. Chem., 65, 1224 (1961);
Ciampolini, P. Paoletti, and L. Sacconi, J. Chem. Soc., 2994 \mathbf{M} (1961).
(1961).
(1981). (2) A. Vacca, D. Arcnarc, and P. Paoletti, *Inorg. Chem.*, 5, 1384

(10) G. Schwarzenbach, Pure Appl. Chem., 307 (1970).

Complex Formation. The complexes which we Complex Formation. The complexes which we have ascertained to be present at some point in the titrations are: CuHL³⁺, CuL²⁺, CuL₂²⁺, CuHL₂³⁺, $\text{Cut}(\text{OH})^+$; $\text{Zn}L^{+}$, $\text{Zn}L^{+}$, $\text{Zn}L(\text{OH})^+$; NiHL³⁺, NIL^{2+} and NIL^{2+} . The complex $N1HL^{3+}$ was not for all three metals are given in Figure 1, *2,* and 3.

 $\frac{1}{2}$, complex has type of complex ha MHL^{3+} Complexes. This type of complex has been characterised for nickel and for copper in low pH regions. The equilibrium constant for the reaction $ML^{2+} + H^+ \rightleftharpoons MHL^{3+}$ varies, when $M = Ni$,

Figure 1. Distribution curves of $Ni¹¹(2, 3-tri)$ complexes. Ligand: metal ratio 1:0.5. The curves of the free Ni²⁺ion was not reported.

Figure 2. Distribution curves of $Cu^{(2)}(2, 3-tri)$ complexes. Ligand: metal ratio 1:0.25. The curves of the free Cu^{2+} ion was not reported.

Figure 3. Distribution curves of $Zn''(2,3-tri)$ complexes. Ligand: metal ratio 1:0.5. The distribution curve of the free Zn²⁺ion was not reported.

in the order $Me₇(2,2,2,2$ tetra)'' $>$ penten'' $>$ ptetraen'' $>$ $(2,3-tri)$ > $(2,2,2,2-tetra)^{14}$ while when M = Cu the order is different, ptetraen > penten > $Me₇(2,2,2,1)$ -tetra) $>(2,2,2,2$ -tetra), $(2,2,2$ -tri)¹⁵ $>(2,3$ -tri), where Me₇- $(2,2,2,2$ -tetra) = tetraethylenepentamine eptametylated, penten $= N.N.N'.N'-tetra(2-aminoethyl)ethylenediam$ ine, ptetraen = N, N, N', N' -tetra(2-aminoethylpropylenediamine). The amine $Me₇(2,2,2-tetra)$ (otherwise known as Me₇-tetren) forms only weak complexes because of the steric hindrance to coordination produced by the N-methyl groups. It is therefore logical that Me₇tetren should form the most easily protonated complex. With copper, however, one nitrogen atom of ptetraen¹³ or penten¹²is not coordinated at all, and therefore the copper complexes of these ligands protonate the most casily. Complexes of (2,3-tri) with both metals are weakly protonated, which would seem to indicate that they are particularly stable. It is strange, however, that $(2,3-tri)$, which forms stronger 1:1 complexes with Ni and Cu than do $(2, 2-tri)$ and $(3, 3-tri)$ should also form more strongly protonated 1:1 complexes (Table Π). This apparent disparity can be explained by considering in more detail the protonation process. The proton may attack any one of three different sites leading to the formation of three different protonated 1:1 complexes of $(2, 3-tri)$, because of the unsymmetrical nature of the ligand. $(2,2-tri)$ and $(3,3-tri)$ can form only two isomeric protonated complexes. There are four factors which can determine which protonated form is predominant in $MH(2,3-tr)$:

 \ddot{x} in the order Me7(2,2tetra) \ddot{x}

(i) The nitrogen atom at the end of the trimethylene (i) The nitrogen atom at the end of the trimethylene chain has a pK value of 10.27 (obtained from the formula of Clark and Perrin¹⁶ which gives the pK for individual nitrogen atoms) and is therefore more basic than the central nitrogen atom (pK 9.95) and the other terminal nitrogen atom (pK 9.82).

 $\frac{1}{\sqrt{1-\frac{1$ (ii) The protonation of the nitrogen atom at the end of the trimethylene chain opens the least stable six-membered chelate ring and leaves the five-mem-
bered ring intact.

 $\lim_{n\to\infty}$ The ammonium group so formed is at the grea t_{111}) The ammonium group so formed is at the greatest possible distance from the positive charge on the central metal ion. $\mathcal{O}(\mathcal{O}_\mathcal{A})$ The proton of the central nitrogen atomic of

 (v) The protonation of the central nitrogen atom would give rise to an unstable 9-membered chelate ring. $\frac{18}{15}$ of protonated complex formed is determined in the set of protonated is determined in the set of protonated is determined in the set of protonated in the set of protonated in the set of protonated in the set of

The type of protonated complex formed is determined by all four factors. With $(2,2-tri)$ the complex MHL^{3+} is not formed on account of factor (iii), that is, because of electrostatic repulsion between the ammonium group and the central metal cation, whereas with $(3,3-tri)$ protonation of a terminal nitrogen atom would leave the complex with only one relati-

vely unstable six-membered ring.
If one compares the reaction of Ni^{2+} and Cu^{2+} with

(II) A. Vacca, *Ric.* Sci., 12, 1363 (1966). (12) L. Sacconi, P. Paoletli, and M. Ciampolini, I. *Chent. SW., 5046* (1964).

5046 (1964).
 $He1v$. Paoletti, R. Walser, A. Vacca, and G. Schwarzenbach
 $He1v$. Chim. Acta, 54, 243 (1971).
 (14) P. Paoletti and A. Vacca, J. Chem. Soc., 5051 (1964).

(15) L. Sacconi, P. Paoletti, and M. Ciampolini,

(16) J. Clark and D.D. Perrin, Quart. Rev., 18, 295 (1964).

Barbucci, Fabbrizzi, Paoletti | Size of the Chelate Rings and Stability of Some Transition Metal¹¹ Ion Complexes

the bidentate ligands $(2, 3-triH)^+$ or with ethylene di $amine^{17,18}$ the constant for the formation of the former complexes is 1.7 log units lower for both metals, showing that the electrostatic effects operative in this reaction are the same for both metals.

 ML^{2+} *Complexes.* All three ligands (2,2-tri), (2,3tri) and (3,3-tri) form 1:1 complexes with $Ni²⁺$, Cu²⁺ and Zn^{2+} . The stability of the complexes follows the usual order $Cu > Ni > Zn$ (Table III). The ligand stabiliiy order for the copper and nickel complexes is $(2,3-tri) > (2,2-tri) > (3,3-tri)$. This shows that a sequence of 5- and 6-membered connected chelate rings is more stable than two 5-membered rings. Thus, the results obtained with tridentate ligands are analogous to those obained^{1,15,19} with the tetradentate ligands described in the introduction, in that complexes with mixed 5- and 6-membered rings are more stable than complexes with only 5- or only 6-membered rings.

The stability of the Zn^{2+} complexes follows the order $Zn(2,2-tri) \approx Zn(2,3-tri) > Zn(3,3)$ and this trend $\frac{1}{2}$ in $\frac{1}{2}$, $\frac{1}{2}$, (3) similar to the one round with the tetrammines zhi-
(2,3,2 tot)1₂: Z_n (2,2,2 tot)¹⁵> Z_n (3,3,3-tot).¹⁹ The dif- $(2,3,2\text{-}tet)^1 \approx Zn(2,2,2\text{-}tet)^{15} > Zn(3,3,3\text{-}tet)^{19}$ The difference in the order of ligands compared to the copper and nickel cases has been explained on the basis that the zinc complexes have a tetrahedral stereochemistry.

MLzzi Complexes. The equilibrium constants for m_{22} complexes. The equilibrium constants for T_{th} complexes $Z_n/2, Z_{\text{th}}$ and $C_n/2, Z_{\text{th}}$ have a The complexes $Zn(2,3-tri)_2$ and $Cu(2,3-tri)_2$ have a small range of existence, as shown in Figures 2 and 3, because of competition with the formation of the hydrolyzed complex ML(OH)+. The fact that the hydrolyzed complex is formed at the expense of 1: 2 complex clearly shows that the 1: 1 complex can accept a hydroxyl group more easily than a second polyamine ligand. Steric factors must play an important

(17) M. Ciampolini, P. Paoletti, and L. Sacconi, J. Chem. Soc.,
4453 (1960).
(18) R. Barbucci, L. Fabbrizzi, P. Paoletti, and A. Vacca, J.
Chem. Soc., Dalton, 740 (1972).
(19) R. Barbucci, L. Fabbrizzi, and P. Paoletti, J

role in the formation of these complexes. This can FOIC III THE TOFINATION OF THESE COMPLEXES. THIS CAN also be seen in the fact that the step-wise formation constants for the addition of the second ligand (K_2) decrease in the order $(2,2-tri) > (2,3-tri) > (3,3-tri)$, that is, they decrease with the increasing bulk of the ligands. The trend in K_2 is different from the trend in K_1 .

 $K₂$ for the copper complex is very small, and the difference (K_2-K_1) is the greatest in the copper complexes. This is consistent with the hypothesis that not all the nitrogen atoms are coordinated in the 1: 2 complex. The presence of a protonated complex Cu- HL_2^{3+} which is formed in the more acid region seems to confirm this hypothesis. The deprotonation of Cu- $\frac{1}{10}$ communitations of higher pH would give the 1.2 $\frac{11L_2}{2}$ in the regions of inglict pri would give the 1:2 complex $CuL₂²⁺$ in which the formerly protonated nitrogen atom remains uncoordinated. It is to be noted that the equilibrium constant for the reaction $CuL^{2+}+$ $L \rightarrow \text{CuL}_{2}^{2+}$ is not very different from the constant for $t \mapsto C_1 L_2$ is not very different from the constant for C_2 . when $\cos \theta$ considers that in the second reaction two when one considers that in the second reaction two positively charged groups come together.

Hydroxy-complexes ML(OH)+. The stability of the μ yaroxy-complexes m_L \cup μ). The stability of the stehydroxy complex is virtually independent of the steric effects of the polyamine bound to the metal ion, so that the formation constants of the hydroxy complexes CuL(OH)⁺ and ZnL(OH)⁺ are roughly the same when $L = (2,2$ -tri), (2,3-tri) or (3,3-tri). Nor is the when $L = (2,2$ -tri), $(2,3$ -tri) or $(3,3)$ -tri). Not is the h t_{the} . N-methyl or N-ethyl derivatives of $(2,2,1,2^0,1)$. the N-methyl or N-ethyl derivatives of $(2,2\text{-tri})^{20}$ It seems probable, therefore, that the complex CuL(OH)⁺ seems probable, inerefore, that the complex $\text{Cut}(\text{OPT})$ ture in which there is no steric interference from the ture in which there is no steric interference from the polyamine ligand.

Acknowledgments. We thank Mr. C. Bianchi for technical assistance and the Italian Consiglio Naziotechnical assistance and the Italian Consiglio Nazionale delle Ricerche for financial support.

(20) J.W. Allison and R.J. Angelici, *Inorg. Chem.*, 10, 2233 (1971).